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Abstract

The researchers made significant progress in all of the proposed research areas. The first major
task in the proposal involved risk-sensitive control and estimation. In support of this task, the
researchers made strides toward a deeper understanding of risk-sensitive estimation and Markov
chains.

In support of the second task, the researchers made progress incorporating simulation-based
optimization and population-based methods into optimization problems. They made significant"
progress on new simulation-based global optimization methods, as well as on evolutionary ap-
proaches to solving Markov Decision Processes (MDPs), new sampling methods for MDPs, simulation-
based methods for MDPs, new approaches to the allocation of simulation replications for optimiza-

tion, and applications of these algorithms.
In support of the third major task that involves estimation and control algorithms for graphical

models and networked systems, the researchers made progress on developing scalable algorithms

for inference on graphical models. In particular, they developed a new framework for distributed,
dynamic tracking and data association for multiple targets from multiple, distributed sensing nodes.
This new method exploits both their communications-sensitive algorithm and their method of
Nonparametric Belief Propagation.
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1 Introduction
In this research project, we proposed to investigate integrated risk-sensitive, simulation-based,
population-based and graphical methodologies for planning, estimation, and control that can be
effective tools in an integrated approach to Global Awareness (Intelligence, Surveillance and Recon-
naissance, or ISR) and Command and Control (C2). The questions we investigated were motivated
by future Air Force requirements, which will involve a flexible and world-responsive set of missions.
Issucs that arise in this context include the fact that information for both training and operations
may arrive just in time (in fact, perhaps even as forces are being deployed), requiring a much more
agile, responsive, and integrated ISR-C2 system. A key idea is that, rather than separate ISR and
C2 planning and execution cycles and collection managers dedicated to certain assets, there should
be dynamic feedback between the ISR and C2 systems (i.e., between commanders and collection
managers), and there should be dynamic allocation of sensing, collection, and processing assets.

Such systems are exceedingly complex, and we combined four approaches in the study of such
problems:

" Utilizing risk-sensitive cost functions to achieve robustness and incorporate risk;

" Using simulation and other numerical methods for sequential decision making under uncer-
tainty;

" Developing and studying efficient simulation-based and sampling methodologies for global
optimization problems;

" Utilizing the structure of the system (in particular, graphical and networked models) to design
scalable fast algorithms for planning, estimation, and control.

Graphical models represent a powerful framework capable of capturing spatio-temporal and
hierarchical/multi-granularity relationships (cf. the Report of the Tri-Service Working Group on
the Role of Probability and Statistics in Command and Command and Control [781 (Principal
Authors: Prof. Alan S. Willsky, Prof. Steven I. Marcus, and Dr. Wendy Poston). The exploitation
of structure, such as that inherent in graphical models, is essential for the computations involved
in estimation and planning to be feasible. It has been our intention to integrate the risk-sensitive,
simulation-based, population-based and computational methods discussed below with work on the
control and estimation of systems described via graphical models, such as trees, dynamic Bayes
networks, networked systems, and Petri nets.

Simulation and sampling can be effective tools for the analysis, design, and control of such
systems (e.g., Andrad6ttir 1998, Jacobson and Schruben 1989, Fu 2002ab). Even those problems
that can in principle be modeled using analytical techniques such as Markov chains may lead to
computationally intractable models. A typical example of this is a large queueing network with
general arrival processes and service time distributions, for which a simulation model can be easily
and quickly built.

The need to address sequential decision making under uncertainty has led to the recent research
focus on simulation-based methods for solving Markov decision processes (MDPs), which provide
a useful framework for formulating these types of problems (e.g., Bertsekas and Tsitsiklis 1996,
Sutton and Barto 1998). Most of the approaches have concentrated on approximating the value
function, in effect reducing the dimensionality of the state space to a manageable number through
a suitable parameterization (e.g., Das et al. 1999, Van Roy and Tsitsiklis 2001). The function
approximation is carried out via a number of different techniques, including the use of basis functions
and neural networks, where simulation is used to provide samples in order to fit curves. The key
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idea throughout is to avoid enumerating the entire state space. The approaches studied in this
research are meant to complement these highly successful techniques.

The goal of global optimization is to find parameter values that achieve the optimum of an
objective function. In general, due to the presence of multiple local optimal solutions, global
optimization problems are extremely difficult to solve exactly. Solution methods for both continuous
and combinatorial global optimization problems can be categorized as being either instance-based or
model-based (cf. Zlochin 2004). In instance-based methods, the searches for new candidate solutions
depend explicitly on previously generated solutions. Some well-known approaches are simulated
annealing (SA) (Kirkpatrick 1983), genetic algorithms (GAs) (Srinivas 1994), tabu search (Glover
1990), and the recently proposed nested partitions (NP) method (Shi 2000).

Model-based search methods are a new class of solution techniques introduced in recent years. In
model-based algorithms, new solutions are generated via an intermediate probabilistic model that
is updated or induced from the previously generated solutions. In general, most of the algorithms
that fall in this category share a similar framework and involving the following two phases:

1. Generate candidate solutions (random samples, trajectories) according to a specified proba-
bilistic model (e.g., a parameterized probability distribution on the solution space).

2. Update the probabilistic model, on the basis of the data collected in the previous step, in
order to bias the future search toward "better" solutions.

Some well established techniques that belong to the model-based methods are the cross-entropy
(CE) method (Deboer 2005, Mannor 2003, Rubinstein 1997, Rubinstein 1999, Rubinstein 2001, Ru-
binstein2004), a class of algorithms called the estimation of distribution algorithms (EDAs) (Lar-
ranaga 1999, Muhlenbeinl996, Pelikan 1999), and the so-called annealing adaptive search (AAS)
(Shen 2005, Zabinsky 2003). Key questions in model-based methods are: (i) how to efficiently
update the probability distributions, and (ii) how to efficiently sample from the probability dis-
tributions. While many solution techniques have been proposed, there is still a need for efficient
algorithms that are based on a precise mathematical framework, are provably convergent, converge
to an optimal solution quickly, are easy to implement, and handle both continuous and combina-
torial, deterministic and stochastic optimization problems.

Our approach has been based on the following key points:

" Scalable fast algorithms will only be possible if one can exploit the inherent structure of the
system.

" New and efficient approaches for incorporating rigorous simulation and statistical methods
are required for the solution of difficult optimization and sequential decision making problems.

* Often it is much easier and more efficient to simulate complex systems than to model them
analytically.

" Risk-sensitive objective functions axe an effective approach for incorporating risk and achiev-
ing robustness.

2 Simulation-based and Sampling Methods for Global Optimiza-
tion

We have considered the following optimization problem:

x*E eargmaxH(x), xEXCR', (1)
XEX
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where the solution space X (which can be either continuous or discrete) is a non-empty subset of
R', and H(.) : X -- R is a deterministic function that is bounded from below, i.e., 3 M > -oo
such that H(x) > M V x E X. We assume that problem (1) has a unique global optimal solution,
i.e., there exists x* E X such that H(x) < H(x*) for all x k x*, x E X, but there may be many
local optimal solutions.

In Hu, Marcus, and Fu (2006b), we presented a general model-based global optimization frame-
work called model reference adaptive search (MRAS). The motivation behind MRAS is to use a
sequence of intermediate reference distributions to facilitate and guide the updating of the pa-
rameters associated with the family of parameterized distributions during the search process. The
sequence of reference distributions in MRAS are selected such that they can be shown to converge
to a degenerate distribution concentrated only on the set of optimal solutions. The sequence of ref-
erence models is only used implicitly to guide the parameter updating procedure, in contrast to the
usual Estimation of Distribution Algorithms (EDAs), where the distributions must be constructed
explicitly. At each iteration of MRAS, candidate solutions are generated from the distribution
(among the prescribed family of distributions) that possesses the minimum Kullback-Leibler (KL)
divergence with respect to the reference model corresponding to the previous iteration. These
candidate solutions are in turn used to construct the next distribution that has the minimum
KL-divergence with respect to the current reference model, from which future candidate solutions
will be generated. For a class of parameterized probability distributions, the so-called Natural
Exponential Family (NEF), the algorithm converges to an optimal solution with probability one.

To explain the main idea behind MRAS, we consider the following naive model-based approach
for solving (1). Let go(x) > 0 Vx E X be an initial probability density/mass function (p.d.f./p.m.f.)
on the solution space X. At each iteration k > 1, we compute a new p.d.f. by tilting the old p.d.f.

gk-l(X) with the performance function H(x) (for simplicity, here we assume H(x) > 0 Vx E X),
i.e.,

H(x)gk-1 (x) Vx € X, (2)
gk(X) = fx H()gk-l(dx)'

By doing so, we are assigning more weight to the solutions that have better performance. One direct
consequence of this is that each iteration of (2) improves the expected performance. To be precise,
let X = (X 1 ,... , X,) be a random variable taking values in X. To reduce the notational burden,
henceforth X will be used to denote a random variable having the distribution under which the
expectation is indicated. Thus, Egk [H(X)] = fX H(x)gk(dx) and Eg,- 1 [H(X)] = fX H(x)gk-l(dx).
Then we have

Egk_ [(H(X)) 2 ]
Egk[H(X)] [H(X)

> Eg,I[H(X)].

Furthermore, it is possible to show that the sequence of p.d.f.'s {gk(-), k = 0, 1,... } will converge
to a p.d.f. that concentrates only on the set of optimal solutions for arbitrary go(.). So we will
have limk--, Egk [H(X)l = H(x*).

However, the above approach is generally of little practical use, due to the following reasons: (i)
It is usually not possible to enumerate all the points in the solution space in order to perform the
update (2); furthermore, if it were possible, the optimal solution could be immediately identified
simply by checking which point has the best performance value. (ii) The p.d.f. gk(x) constructed
at each iteration may not have any structure, and therefore may be very difficult to handle.

To overcome the above difficulties, we considered in Hu, Fu, and Marcus (2006b) the Monte
Carlo (sampling) version of the above approach and at the same time restrict ourselves to a family
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of parameterized p.d.f.'s/p.m.f.'s {f(., 0)}, where 0 is the parameter vector. In particular, at each
iteration k of the algorithm, we look at the projection of gk(') on the family of p.d.f.'s/p.m.f.'s
{f(-, 0)} and compute the parameter vector Ok that minimizes the Kullback-Leibler (KL) divergence

V(gk, f(-, 0)) Ek [In gk(X) I = I In 9(X) gk(x)V(X), (3)1 PX 0 E A, )(3

where v is the Lebesgue/counting measure defined on X. The benefits of the above consideration
are twofold: on the one hand, f(, 0k) often has some special structure and therefore could be
much easier to handle than gk(). On the other hand, the sequence {f(., Ok)} may retain some
nice properties of {gk(.)} and converge to a degenerate p.d.f. concentrated on the set of optimal
solutions.

2.1 The MRASO Algorithm (Exact Version)

Let Pok (.) and Eok ['] denote the probability and expectation taken with respect to the p.d.f./p.m.f.
f(., Ok), and let I{.} denote the indicator function, i.e.,

I{A} 1 if event A holds,

{ 0 otherwise.

Thus, in this notation,

ok (H(X) > -) = fX I{H(x)>7}f(Xi k)v(dx),

Eo,[H(X)] = L H(x)f(x, 0)V(dx).

Algorithm Description

The MRASO algorithm requires specification of a parameter p, which determines the approximate
proportion of samples that will be used to update the probabilistic model. At successive iterations

of the algorithm, a sequence {yk, k = 1, 2,... }, i.e., the (1 - p)-quantiles with respect to the
sequence of p.d.f's {f(., 0 )}, are calculated at step 1 of MRASO. These quantile values are then
used in step 2 to construct a sequence of non-decreasing thresholds {'k, k = 1, 2,... }; and only those
candidate solutions that have performances better than these thresholds will be used in parameter

updating (cf. equation (4). The theoretical convergence of MRASO is unaffected by the value of the
parameter p. The purpose of p in our approach is to concentrate the computational effort on the set
of elite/promising samples, which is a standard technique employed in most of the population-based
approaches, like GAs and EDAs.

During the initialization step of MRASO, a small number E and a continuous and strictly in-

creasing function S(.) : R --+ W+ are also specified. The function S(-) is used to account for the
cases where the values of H(x) are negative for some x, and the parameter E ensures that each
strict increment in the sequence {;yk} is lower bounded, i.e.,

inf (;rk+1 - -Yk) > .
k=1,2,...

We require e to be strictly positive for continuous problems, and non-negative for discrete problems.
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Algorithm MRAS0: Model Reference Adaptive Search - exact version

* Initialization: Specify the parameter p e (0, 11, a small number e > 0, a
continuous and strictly increasing function S(.) : R -- R, and an initial
p.d.f./p.m.f. f(x,Oo) > 0 Vx E X. Set the iteration counter k - 0.

" Repeat until a specified stopping rule is satisfied:

1. Calculate the (1 - p)-quantile

-Yk+i := sup ( : Pe, (H(X) > 1) >_ p}
1

2. if k = 0, then set 'k+ = Yk+i.

elseif k > 1

if yk+1 > 7k + c, then set k±l = 'Yk+l.

else set Yk+l = 7k-

endif

endif

3. Compute the parameter vector Ok+j as

Ok+1 :=;argmaxE [
S ( H ( X ) ) ] k  

(X)k lnf(X,0)] (4)OEe f(X,ok) I.x_ ,

4. Set k=k+l.

In continuous domains, the division by f(x, Ok) in the performance function in step 3 is well de-

fined if f(x, Ok) has infinite support (e.g. normal p.d.f.), whereas in discrete/combinatorial domains,

the division is still valid as long as each point x in the solution space has a positive probability of

being sampled. Additional regularity conditions on f(x, Ok) ensure that step 3 of MRASO can be

used interchangeably with the following equation:

Ok+1 = arg max j [S(H(x))]k I{H(x)>7k+IIn f(x, O)v(dx).

The following lemma shows that there is a sequence of reference models {g(), k = 1, 2,....

implicit in MRASO, and the parameter Ok+1 computed at step 3 indeed minimizes the KL-divergence
D(gk+1, f(-, 0)).

Lemma. The parameter 0 k+1 computed at the kth iteration of the MRASO algorithm minimizes
the KL-divergence D (9k+1, f(-, 0)), where

Ek [S(H())IH(x)>7k+ }k(x) Vx E X, k = 1,2,...,E9k [S(H(X))I{H(X)>_ k+,}]j

gi(x) := I{H(x) -i}
Eo [ 4xL- O]•

2.2 Global Convergence

Global convergence of the MRASO algorithm clearly depends on the choice of parameterized dis-
tribution family. The algorithm may not be computationally tractable for some choices. In Hu,
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Fu, and Marcus (2006b), we have utilized a particular family of p.d.f.'s/p.m.f.'s called the natural
exponential family (NEF), for which the global convergence properties can be established.

Definition. A parameterized family of p.d.f's {f(-, 0), 0 - 0 C R'} on X is said to belong to the
natural exponential family (NEF) if there exist functions h(.) : R" , R, F(.) : Rn - Rm, and
K(.) :m - R such that

f(x, 0) exp {OTF(x) - K(O)} h(x), VO E 8), (5)

where K() = ln f. exp {OTF(x) } h(x)dx, and the superscript "T" denotes the vector trans-

position. Many common p.d.f.'s/p.m.f.'s belong to the NEF, e.g., Gaussian, Poisson, binomial,

geometric, and certain multivariate forms of them. Some regularity conditions are needed to prove
convergence of the algorithm.

Assumptions:

Al. There exists a compact set H C X such that the level set {x: H(x) I 3i} C rI, where 1 -

supi{l : Po.(H(X) >_ 1) > p} is defined as in the MRAS algorithm.

A2. For any given constant < H(x*), the set {x : H(x) > } has a strictly positive Lebesgue
measure.

A3. For any given constant 6 > 0, supxeA6 H(x) < H(x*), where Ab := {x : lix - x*11 > 61.

A4. The maximizer of equation (4) is an interior point of ( for all k.

A5. supOEe 11 exp{OTr(x)}F(x)h(x)ll is integrable/summable with respect to x, where 0, F(-), and
h(.) are defined as above.

A6. r(-) : m , Rn given above is a continuous mapping.

Remark 1: Assumptions Al-A3 are regularity conditions imposed on the optimization problem
to be solved, whereas assumptions A4-A6 are restrictions imposed on the parameterized family
of p.d.f.'s. Al is satisfied if the function H(.) has compact level sets or the solution space X is
compact. Intuitively, assumption A2 ensures that any neighborhood of the optimal solution x*
will have a positive probability of being sampled; it is satisfied if the objective function H(.) is
continuous at x*. Since H(.) has a unique global optimizer, A3 is satisfied by many functions
encountered in practice, and is guaranteed to hold if X itself is compact. In actual implementation
of the algorithm, step 3 of MRAS0 is often posed as an unconstrained optimization problem, i.e.,
e = Rm, in which case A4 is automatically satisfied. It is also easy to verify that A5 and A6 are
satisfied by most NEFs.

Theorem: Let {Ok, k = 1, 2,... } be the sequence of parameters generated by MRAS 0 . If E > 0
and assumptions Al-A6 are satisfied, then

lim Eo, [r(x)] = r(x*). (6)

Remark 2: Notice that when 1(x) is a one-to-one function (which is the case for many NEFs used in
practice), the convergence result (6) can be equivalently written as F- 1 (limk-.. Eok [1F(X)]) = x*.
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Also note that the limit in equation (6) is component-wise. For some particular p.d.f.'s/p.m.f.'s,

the solution vector x itself will be a component of F(x) (e.g., multivariate normal distribution).
Under these circumstances, we can disregard the redundant components and interpret equation (6)
as limk-,, E0k [X] = x*. Another special case of particular interest is when the components of the
random vector X = (X,..., X,) are independent, i.e., each has a univariate p.d.f. of the form

f(xj,i9) = exp(xj20 - K(t9j))h(xj), t9i C R,V i = 1,..., n.

In this case, since the p.d.f. of the random vector X is simply the product of the marginal p.d.f.'s,
we will clearly have F(x) = x. Thus, equation (6) is again equivalent to limk-..o Eok [X = x*,

where Ok := (1,..., k), and V9 is the value of i9i at the kth iteration.

2.3 Monte Carlo Algorithm

The MRASO algorithm describes the idealized situation where quantile values and expectations can
be evaluated exactly. In practice, we will usually resort to its stochastic (sampled, or simulation-
based) counterpart, where only a finite number of samples are used and expected values are replaced
with their corresponding sample averages. For example, step 3 of MRAS0 will be replaced with

1 N [S(H (X,))] k

Ok+l = arg max E-
O -N f(X_,__) {In f(X,O0), (7)

where X 1,..., XN are i.i.d. random samples from f(x, Wk), Wk is the estimated parameter vector
computed at the previous iteration, and k+l is a threshold determined by the sample (1 - p)-
quantile of H(X1),..., H(XN).

However, the theoretical convergence can no longer be guaranteed for a simple stochastic coun-

terpart of MRAS0. In particular, the set {x: H(x) >_ i'k+i} involved in equation (7) may be empty,
since all the random samples generated at the current iteration may be much worse than those
generated at the previous iteration. Thus, we can only expect the algorithm to converge if the
expected values in the MRASO algorithm are closely approximated. Obviously, the quality of the

approximation will depend on the number of samples to be used in the simulation, but it is difficult
to determine in advance the appropriate number of samples. A sample size too small will cause the
algorithm to fail to converge and result in poor quality solutions, whereas a sample size too large
may lead to high computational cost.

As mentioned earlier, the parameter p, to some extent, will affect the performance of the

algorithm. Large values of p mean that almost all samples generated, whether "good" or "bad",
will be used to update the probabilistic model, which could slow down the convergence process.

On the other hand, since a good estimate will necessarily require a reasonable amount of valid
samples, the quantity pN (i.e., the approximate amount of samples that will be used in parameter
updating) cannot be too small. Thus, small values of p will require a large number of samples to
be generated at each iteration and may result in significant simulation efforts.

In order to address the above difficulties, we adopted in Hu, Fu, and Marcus (2006b) the same
idea as in Homem-de-Mello and Rubinstein (2003) and proposed a modified Monte Carlo version
of MRASO in which the sample size N is adaptively increasing and the parameter p is adaptively
decreasing.

Algorithm Description and Convergence

Roughly speaking, the MRAS, algorithm is essentially a Monte Carlo version of MRASO except
that the parameter p and the sample size N may change from one iteration to another. The rate
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Algorithm MRASi: Model Reference Adaptive Search - Monte Carlo
version

" Initialization: Specify po E (0, 11, an initial sample size No > 1, e > 0,
a> 1, a mixing coefficient A E (0, 1], a continuous and strictly increasing
function S(.) : R - R, and an initial p.d.f. f(x,Oo) > 0 Vx E X. Set

W., (, k ,- 0.

* Repeat until a specified stopping rule is satisfied:

1. Generate Nk i.i.d. samples
Xi,...,XV '- f(-, Ok) (1 A)f(', Ok) + Af(., 0o).

2. Compute the sample (1 -pk)-quantile -k+l (Ph, Nk) := H(r(1-pA)Njj),

where [a] is the smallest integer greater than a, and H(j) is the ith

order statistic of the sequence {II(Xik), i = 1 .N }.
3. Ifk = 0 or 5,k+l(pk,Nk) ?_ k + S, then

3a. Set 'm+1 -jk+I(Pk, Nk), Pk+ 1- Pk, Nk+ 1  N- k.

else, find the largest f E (0,pk) such that ik+ 1 (fi, Nk) 'k + 2"
3b. If such a fi exists,

then set I k+l -- k+i(fi,Nk), Pk+l - fi, Nk+1 - Nk.

3c. else (if no such p exists),

set Y/k+l -- 7k, Pk+1 -- Pk, Nk+1 -- [aNk].

endif

4. Compute Ok+1 as

W a a k N= [S(H(X))f'ax-  
I{H(Xk)>k+l}ln f(X,O).

(8)

5. Set k--k+1.

of increase in the sample size is controlled by an extra parameter a > 1, specified during the

initialization step. For example, if the initial sample size is No, then after k increases, the sample
size will be approximately rakNol.

In Hu, Fu, and Marcus (2006b), finite time --optimality, with probability 1, of this Monte-

Carlo version has been proved. Numerical studies have shown that the algorithm is effective on a

wide range of problems, including continuous problems with many local optima, and combinatorial

problems such as asymmetric traveling salesman problems. The algorithm has also performed well

on problems of topology configuration in Wave Division Multiplexed (WDM) optical networks.

2.4 Stochastic Model Reference Adaptive Control (SMRAS)

In Hu, Fu, and Marcus (2006c), we have extended the MRAS method to stochastic optimization
problems, where the function values can only be observed in the presence of noise. Denoting H(x)
as the random observation of the true function value H(x) made at point x, the stochastic version
of problem (1) can be formulated as

x*CargmaxE[H(x)], xEXC', (9)
XEX

9



where E(.) is the expectation with respect to the probability distribution of the observation noise.

Since an unbiased estimate of E[FH(x)] is

1M

where fHi(x), i = 1,..., M are i.i.d. observations made at x, it would be natural to generalize the

performance function [S(H(x))Ik in MRAS to

kSk(H(x)) := rIS(l(x) (10)
i=1

Clearly for the deterministic case (i.e., no observation noise) we will have the original performance
function. In particular, if we take S(-) to be an exponential function (e.g., S(H(x)) = eH(x)), then
equation (10) can be written as

k

Sk(H(x)) exp (Ei X).

Therefore, by the strong law of large numbers, it is possible to show that MRAS with the generalized
performance function will converge w.p. 1 to an optimal solution of (9). However, for this generalized
performance function, we need to keep track of all the past observations made at all points that
have been visited thus far, which could be computationally difficult to handle when the solution

space is large or uncountable.
A major modification from the original MRAS method is in the way the sequence of reference

distributions is constructed. In MRAS, reference distributions are idealized probabilistic models

constructed based on the exact performance of the candidate solutions. In the stochastic case,
however, the objective function cannot be evaluated deterministically, so the sample average ap-

proximations of the (idealized) reference distributions are used in SMRAS to guide the parameter
updating. We show in Hu, Fu, and Marcus (2006c) that for the Natural Exponential Family (NEF),
SMRAS converges with probability one to a global optimal solution for both stochastic continuous

and discrete problems. To the best of our knowledge, SMRAS is the first model-based search method
for solving general stochastic optimization problems with provable convergence. The algorithm has
been shown to perform efficiently on a range of stochastic problems, including problems of buffer
allocation and inventory control.

3 Simulation-Based and Sampling Methods for MDPs

3.1 Efficient Simulation Allocation via Adaptive Sampling

The basic MDP model we consider in this section is specified by the following notation:

Xi = state in period i;
T = time horizon, or number of periods (also known as stages);

S = state space;
A = action space;

fi(x, a, w) = transition function in period i for action a taken in state x,

where w represents the stochastic effects (e.g., a sample path);

Ri(x, a, w) = one-period reward in period i for action a taken in state x,

Ai c A(Xi) = action taken in period i.
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Thus, the MDP {Xi, i = 0, 1, ... , T} receives reward Ri(Xi, Ai, w) in period i and then transitions
according to

Xi = fi(Xi-1, Ai-1, w).

The objective is to find a feedback control policy fit r(X)}i 1 - a mapping specifying the action
taken when in state x in period i - that maximizes an expected reward function, which, for
simplicity, we take here to be the finite horizon discounted total reward: (see Arapostathis et
al. 1993):

E [ o,R-,(Xi, Ai, w)], (1

where a is the (one-period) discount factor; A key consideration is that simulation is required for
the system dynamics (state transitions) and/or period rewards.

We define some familiar quantities:

Qi(x, a) = (expected) reward-to-go (Q-value) in period i for action a taken in state x

and optimal actions taken henceforth;
Ji(x) = optimal value function in period i for state x.

Then we have the usual Bellman optimality equation (e.g., Puterman 1994, Bertsekas 1995):

Ji(x) = sup {E [R,(x, a) + aJi+l (fi+1 (x, a))]}, (12)
a

written here in two-part form:

Qi(x, a) = E [Ri(s, a) + aJk+l(fi+l(x, a))], (13)

Ji(x) = sup Qi(x, a), (14)
a

where for notational simplification, we henceforth drop explicit display of w. An optimal policy in
period i will be denoted by

7r,(x) EargsupQi(x,a), i=O,...,T- 1, xES(i). (15)
a

In some applications, such as rolling-horizon control and derivatives pricing problems in finance,
the goal is to estimate the optimal value function, i.e., Jo(xo) for a particular initial value xO, rather
than the entire optimal policy. If sampling is required to estimate the expectations involved, then
the obvious way to attack the Bellman equation given by (12), or (13) and (14) is simply to replace
corresponding expectation quantities with their sample means. However, given a total sampling
budget, there is the question of how the budget should be allocated, both in terms of periods and
in terms of actions.

To simplify the exposition in order to enhance understanding and intuition, we begin by placing
some additional assumptions, primarily to reduce the notational burden. Assume that A is discrete
and finite, so that the "sup" operation in the Bellman optimality equation becomes a "max"
operation over a finite set, e.g., (12) becomes

Ji(x) = max {E [R,(x, a) + aJi+i(fi+i(x, a))]}.
aEA

Again, the objective is to efficiently estimate Ji(x), based on sample paths of future transitions and
rewards. The estimate, along with the "best guess" for .r7r (x), is based on sampling over the actions
a E A in period i. In other words, our problem is how to carry out the sampling of actions from a
visited state of a certain period in a sample path. We will assume that we are given a fixed N, the
total number of samples to be distributed among the feasible actions, and N > JAI, so that each
action can be sampled at least once. Then the remaining question is how often should we sample
each of the actions? To summarize, our problem is as follows:

11



* How should the sampling budget N be distributed among the feasible actions (in a period)?

The simplest "solution" is what we call the equal non-adaptive scheme, in which the sampling
budget is distributed equally among the feasible actions, i.e., N/IAJ per action. So, for example,
if there are ten possible actions and the sampling budget is 100, then each action would be sam-
pled ten times to obtain sample transitions and rewards. Clearly this is generally sub-optimal,
and our research is predicated on the assumption that this "equal" sampling can often lead to a

tremendous waste of resources, which can be critical when the computational (sampling) budget is
tight. A simple illustration of this arising in the previous example is when nine of the ten actions
yield estimates of Q(x, a) that are nearly deterministic, whereas the remaining action has a lot of
variability (relative to all of the other actions). Then, in general, it would make much more sense

to concentrate most of the sampling on the one with the high variability. Exceptions to this occur
when the sample estimate of the action with high variability is worse than that of another action
by an amount far exceeding that for which the variability could ever compensate; or when there is
a benefit attached to sampling the best action more often.

Our approach for adaptive sampling in estimating the value function of an MDP is based on
ideas from multi-armed bandit problems (cf. Gittins 1989, Berry and Fristedt 1986). The objective

of these problems is to "play" (select) as often as possible the "arm", which we will call a machine
henceforth, that yields the highest (expected) reward. The optimal policy must balance between
playing the machine that is empirically best thus far (exploitation) - i.e., it has the highest
sample mean, but not necessarily the highest expectation - and trying to find a better machine
(exploration), i.e., a machine that actually has a higher expectation but might have a lower sample
mean thus far due to statistical variation. Our idea is to incorporate results from this rich literature
into a sampling-based process for finding an optimal action in a state for a single period of an MDP.
We then extend the one-stage sampling process into multiple stages in a recursive manner, leading
to a multi-stage (sampling-based) approximation algorithm for solving MDPs. Thus, by applying
the theory of multi-armed bandit problems, we are able to derive a provably convergent algorithm

for solving general finite-horizon MDPs.
The algorithm adaptively chooses which action to sample as the sampling process proceeds, and

provides an asymptotically unbiased estimator with worst-case bias of 0 (T In N/N) and worst-case

time-complexity of 0 ((IAIN)T), which is independent of the size of the state space but depends

on the size of the action space due to the requirement that each action be sampled at least once at
each reached state.

Suppose we estimate Qi(x, a) by a sample mean Qi(x, a) for each action a C A, where

Qi(x,a)= ki(x,a)+a ^N W1 (16)a,z ii(y,(6

where Sa,x is the multiset (which means a set that may include repeated members, i.e., the same

element more than once) of (independently) sampled next states from state x in period i taking

action a, JSa,il _> 1 (all actions from a state must be sampled at least once) and EaEA 1S.,J = N

(so that the total number of sampled (next) states is O(NT), independent of the state space size),
R, (x, a) is the sample mean for the ith period reward, and

J,!N(x) = 1 Q--:i (x, a)

aEA

is an estimate of Ji(x). This leads to the following recursion:

iN(x)= ( J (Y)) ) +=0,..., T -1,
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with jN(x) = 0 for all x c S. Again, an adaptive scheme will specify a sequential selection of the
next action to be sampled in a given state in a given period, which eventually determines ISI.

The main idea behind our adaptive allocation rule is based on a simple interpretation of the
regret analysis of the multi-armed bandit problem, where plays of machine m yield i.i.d. random
rewards with unknown mean yUm, and the goal is to find/play the machine corresponding to the
maximum pm The rewards across machines are also assumed to be independently generated. Let
Tm,(n) be the number of times machine m has been played by an algorithm during the first n plays.
Define the expected regret p(n) of an algorithm after n plays by

M

p(n) = p*n - E limE[Tn(n)] where p* max pm,
m----1

m= I

where M is the number of possible machines. Lai and Robbins (1985) characterized an "optimal"
algorithm such that the best machine, which is associated with tt*, is played exponentially more
often than any other machine, at least asymptotically. That is, they showed that playing machines
according to an (asymptotically) optimal algorithm leads to p(n) = O(ln n) as n -- oc under mild
assumptions on the reward distributions. Unfortunately, obtaining an optimal algorithm is often
very difficult, so Agrawal (1995) derived a set of simple algorithms that achieve the asymptotic
logarithmic regret behavior, using a form of upper confidence bounds. The temptation to play only
the machine with the current maximum sample mean (exploitation) is tempered by the uncer-
tainty associated with estimation, which motivates the need to play other machines occasionally
(exploration). Let jm(i) denote the machine m sample mean, averaged over the number of plays
of that machine, usually different from ii, which denotes the total (over all machines) number of
plays so far. To account for the randomness in the estimation, we find a function am(ii) such that
ji (ft) - am(i') _ pm < im(ii) + a,m(f) with high probability, where P,(h) + Om(i) is the upper
confidence bound that guides exploration. At each play, the algorithms choose the machine with
the current highest upper confidence bound.

For an intuitive description of the allocation rule, consider first only a one-stage approximation,

where we assume for now that we know Jl(x) for all x E S. Then to estimate Jo(x), we need to
estimate Qo(x, a*), where a* E arg maxa Qo(x, a). The search for a* corresponds to the search for
the best machine in the multi-armed bandit problem. We start by sampling each possible action
once at x, which gives a sample one-period reward and leads to the sampled next state. We then
iterate (see Loop in Figure 1) by sampling the action that achieves the maximum among the
current estimates of Qo(x, a) plus its current upper confidence bound (see Equation (18)), where

the estimate (QO(x, a) is given by the immediate reward plus the sample mean of J1 -values at the
visited next states that have been sampled so far (see Equation (16)). If the sampling is done
appropriately, ISxo I/N should provide a good estimate of the likelihood that action a is optimal in
state x; for a* unique, we would expect ISx.,oI/N --+ 1 in the limit as N -* oc. Therefore, we use

a weighted (by ISx,o I/N) sum of the currently estimated value of Qo(x, a) over A to approximate
Jo(x) (see Equation (19)). Ensuring that the weighted sum concentrates on a* (even if not unique)

as the sampling proceeds will ensure that in the limit the estimate J0l(x) converges to Jo(x).
We now provide a high-level description of the adaptive multi-stage sampling (AMS) algorithm

given in Figure 1. The inputs to AMS are a state x C S, N > JAI, and period i, and the output

is J!(x). AMS itself is recursively called to estimate JNl(y), in the Initialization and Loop
subroutines of the algorithm. The initial call to AMS is done with i = 0 and initial state xO,
and every sampling is done independently of the previous samplings. To help understand how the
recursive calls are made sequentially, Figure 2 graphically illustrates the sequence of calls with two
actions, A = {a, b}, and T = 3 for the Initialization portion. The result of this sampling scheme,
as depicted in Figure 2, resemble simulated trees in the same spirit as Broadie and Glasserman
(1997) use for an American-style option pricing problem and Fu and Jin (2002) use in a more
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general MDP setting. However, both of those works use non-adaptive sampling, in the sense that a
fixed number of samples for each action is pre-specified; furthermore, all of the simulated trees are
carried out in their entirety prior to the backwards induction. In our scheme, the sampling of actions
is adaptive, and moreover the backwards induction is integrated recursively with the sampling.

Adaptive Multi-stage Sampling (AMS)

" Input: a state x E S, N > JA, and period i. Output: jj'(x), where jT(-) 0.

* Initialization: Sample each feasible action a E A once from state x and set

Qi(x,a) = Ri(x,a) + aJ.'j(y), (17)

where y is the sampled next state, and set ft = JAI.

" Loop: Sample each feasible action s.t.

a'Eargmax (Qi(x,a)+ f ,lnA (18)
~.EA V Sa,,

where ISa.,j is the number of times action a has been sampled so far,
and ft is the overall number of samples done so far for this stage.

- Update S..,i - S.,i U {y'}, where y' is the newly visited next state from taking a*.

- Update Qj(x, a*) using the current ji,(y') according to (16).

- If ft = N, then go to Exit; else, continue Loop.

" Exit: Return

---(-) Z(x, a). (19)

aEA

Figure 1: Algorithm incorporating adaptive sampling.

It is not difficult to show that the time-complexity of the AMS algorithm is O((IAIN)T). In
contrast, the time-complexity for backward induction is O(JAIISI 2T). Therefore, the main benefit of
the proposed AMS algorithm is independence from the state space size, due to the sampling nature
of the algorithm, although this comes at the expense of exponential (versus linear, for backwards
induction) dependence on both the action space and the horizon length. Thus, the algorithm is
most appropriate for MDPs with large state spaces but relatively small action spaces. In terms of
theory, we have the following rudimentary convergence result:

Theorem (Chang, Hu, Fu, and Marcus 2005). For any state x0,

lim E[jN (xo)] = Jo(xo).
N-oc

3.2 Additional Methods

An alternative adaptive sampling algorithm, called the Recursive Automata Sampling Algorithm
(RASA) for control of finite horizon MDPs is presented in Chang, Fu, Hu, and Marcus (2007). By

extending in a recursive manner an algorithm from learning automata called the Pursuit algorithm,

RASA returns estimates of both the optimal action from a given state and the corresponding

optimal value. For a given initial state, we derive the following probability bounds as a function of
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Figure 2: Graphical illustration of the sequence of the recursive calls made in Initialization of the

AMS algorithm. Each circle corresponds to a state and each arrow with noted action signifies a

sampling (and a recursive call). The bold-face number near each arrow is the sequence number for

the recursive calls made. For simplicity, the entire Loop process is signified by one call number.

the number of samples: (i) a lower bound on the probability that RASA will sample the optimal

action; and (ii) an upper bound on the probability that the deviation between the true optimal
value and the RASA estimate exceeds a given error.

In recent work (Chang, Fu, and Marcus 2006), we have developed a sampling-based algorithm
for solving stochastic optimization problems, based on an algorithm for solving adversarial multi-

armed bandit problems. We then recursively extend the algorithm for the solution of finite horizon

MDPs and analyze its performance, showing that an upper bound on the expected bias approaches
zero as the sampling size per stage approaches infinity, leading to the convergence to the optimal

value of the MDP.
A methodology that utilizes the approach of updating a probability distribution, but in the

context of solving MDPs, has been developed in Chang, Fu, Hu, and Marcus (2006). A simulation-

based algorithm, called Simulated Annealing Multiplicative Weights (SAMW), was proposed for

solving large finite horizon MDPs. At each iteration of the algorithm, a probability distribution over

candidate policies is updated by a simple multiplicative weight rule, and with proper annealing of a

control parameter, the generated sequence of distributions converges to a distribution concentrated

only on the best policies. The algorithm is asymptotically efficient, in the sense that for the goal

of estimating the value of an optimal policy, a provably convergent finite-time upper bound for the

sample mean is obtained.

4 Population-Based Evolutionary Approaches to MDPs

In this section, we discuss our research on evolutionary population-based algorithms for finding

optimal (stationary) policies infinite horizon MDPs. These algorithms are primarily intended for

problems with large (possibly uncountable) action spaces where the policy improvement step in

Policy Iteration (PI) becomes computationally prohibitive, and value iteration is also impractical.

In particular, for PI, maximizing over the entire action space may require enumeration or random

search methods. The computational complexity of each iteration of our algorithms is polynomial in

the size of the state space, but unlike PI and Value Iteration (VI), it is insensitive to the size of the

action space, making the algorithms most suitable for problems with relatively small state spaces
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compared to the size of the action spaces. In the case of uncountable action spaces, our approach
avoids the need for any discretization; discretization can lead to computational difficulties, either
resulting in an action space that is too large or in a solution that is not accurate enough.

The approach taken by our algorithms directly searches the policy space to avoid carrying out
an optimization over the entire action space at each PI step, and resembles that of a standard
genetic algorithm (GA), updating a population of policies using appropriate analogous operations
for the MDP setting. One key feature of the algorithms presented here is the determination of an
elite policy that is superior to the performances of all policies in the previous population. This
monotonicity property ensures that the algorithms converge with probability one to a population
in which the elite policy is an optimal policy.

In Chang, Lee, Fu and Marcus (2005), we proposed a novel algorithm called Evolutionary
Policy Iteration (EPI) for solving infinite horizon discounted reward MDPs. EPI inherits the spirit
of the policy iteration (PI) algorithm but eliminates the need to maximize over the entire action
space in the policy improvement step by directly manipulating policies via a method called "policy
switching" that generates an improved policy from a set of given policies, with a computation time
on the order of the size of the state space. EPI iteratively generates a population (or set) of policies
such that the performance of the elite policy" for a population is monotonically improved with
respect to a defined fitness function. Each iteration of the algorithms consists of two main steps:
generation of an elitist policy by policy switching, and exploration of the policy space by generating
additional policies via mutation and policy switching. The algorithm converges to a population
that contains an optimal policy, independent of the initial population

This work is extended in Hu, Fu, Ramezani, and Marcus (2006), where a new randomized search
method called Evolutionary Random Policy Search (ERPS) is introduced; ERPS considerably
enhances the EPI algorithm to allow it to be more efficient for practical problems. The ERPS
algorithm approaches an MDP by iteratively dividing it into a sequence of smaller, random, sub-
MDP problems based on information obtained from random sampling of the entire actions space
and local search, to extract a convergent sequence of policies via solving these smaller problems.
It thus improves upon both the elitist policy determination and the mutation step by solving a
sequence of sub-MDP problems defined on smaller policy spaces. Each sub-MDP is then solved
approximately by using a variant of PI, where an elite policy is obtained.

As in EPI, each iteration of ERPS has two main steps:

1. An elitist policy is generated by solving the sub-MDP problem constructed in the previous
iteration using a variant of the policy improvement technique called policy improvement with
cost swapping (PICS).

2. Based on the elitist policy, a group of policies is then obtained by using a "nearest neighbor"
heuristic and random sampling of the entire action space, from which a new sub-MDP is
created by restricting the original MDP problem (e.g., cost structure, transition probabili-
ties) to the current available subsets of actions. The "nearest neighbor" heuristic provides
a local search mechanism that leads to rapid convergence once a policy is found in a small
neighborhood of an optimal policy.

Whereas EPI treats policies as the most essential elements in the action optimization step, and
each "elite" policy is directly generated from a group of policies, in ERPS policies are regarded
as intermediate constructions from which sub-MDP problems are then constructed and solved.
This modification substantially improves the performance while maintaining the computational
complexity at essentially the same level. It is proved that the sequence of elite policies converges to
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an epsilon-optimal policy with probability one, and numerical studies are used to compare ERPS

to other algorithms.

5 Risk-Sensitive Control and Estimation

In Ramezani and Marcus (2005), we have viewed the probability distribution of a Markov chain

as the information state of an additive optimization problem. This optimization problem is then
generalized to a product form whose information state gives rise to a generalized notion of probabil-

ity distribution for Markov chains. The evolution and the asymptotic behavior of this generalized
or risk-sensitive probability distribution is studied, and a conjecture is proposed regarding the

asymptotic periodicity of risk-sensitive probability and is proved in the two dimensional case.

Product estimators for partially observed Markov chains are introduced in Ramezani, Marcus,
and Fu (2004), and a notion of risk-sensitivity for which the risk is non-uniform and state-dependent

is defined. Product probability is introduced and studied in the context of left-to-right Markov
chains for uniform and state-dependent cases. It is shown that the qualitative behavior of these

estimators is related to certain threshold properties. In Ramezani, Fu, and Marcus (2005), we con-
sider the relationship between risk-sensitivity and information. Product estimators are introduced
as a generalization of Maximum A Posteriori Probability (MAP) estimator for Hidden Markov
Models. We study the relationship between the inclusion of higher order moments, the underlying

dynamics and the availability of information. Asymptotic periodicity of these estimators and the
relationship between risk and information is studied via simulation.

6 Optimization, Estimation, and Control in Graphical Models and
Networked Systems

We made considerable progress in our work on scalable algorithms for inference in graphical models

(Chen, Cetin and Willsky 2005a; Chen, Cetin, and Willsky 2005b; Chen, Wainwright, Cetin, and

Willsky 2006; Ihler, Fisher, Moses, and Willsky 2005; Ihler, Fisher, and Willsky 2006; Johnson,

Malioutov, and Willsky 2006). One of the applications of our methodologies that we have explored
is that of multisensor, multitarget data association, a notoriously complex problem. We have

now demonstrated that our new algorithms can yield remarkably efficient solutions to optimal data

association problems that have heretofore been considered too complex for practical solution (hence

requiring the use of heuristics to obtain tractable, but suboptimal, solutions). In addition, with

an eye toward implementation in distributed sensor networks, we have developed a local, adaptive

version of these data association algorithms in which, at each iteration, each node in the network

can decide whether to transmit a message to each of its immediate neighbors based on whether

the potential new message differs in a statistically significant manner from the previous message

that was sent to that neighbor. We have shown that this locally adaptive algorithm can result

in dramatic reductions in computationsand communications, if these messages were indeed sent

through a sensor networkwith minimal decrease in association performance.

We have developed a new approach to inference for graphical models that involve non-Gaussian

densities-problems of particular importance for various sensing modalities that provide measure-
ments of either bearing or range. These methods, which involve the use of methods for nonpara-
metric density estimation (for which reason we refer to them as Nonparametric Belief Propagation

(NBP) algorithms), can be viewed as extensions of concepts of particle filtering to inference on

graphs-this extension is highly nontrivial, especially for graphs with loops, as the iterative compu-

tations and generation of messages of belief propagation require new ideas for generating particles
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to replace those messages. In addition to developing the basic methodology, we have also explored
applications in both computer vision and in fusion for sensor networks.

We have completed a study of the communications cost/estimation accuracy tradeoff for particle-
based representations such as those used in NBP. This work provides a systematic approach to fully
adaptive algorithms that directly tradeoff accuracy in the transmitted particle-based message for
the total communications requirement associated with that message. Combining this with our work
on relating errors between exact and transmitted messages and overall estimation accuracy, this
is now the first available methodology for directly trading off overall network estimation accuracy
versus communications requirements.

We have also made considerable advances in understanding inference for Gaussian graphical
models, developing both very powerful, scalable, and accurate methods for covariance calculation
for very large problems and also developing a new framework for analyzing and understanding
distributed message-passing algorithms (based on the idea of so-called walk-sums) that provide
easily computable sufficient conditions, as well as complete necessary and sufficient conditions for
convergence of the well-known Belief Propagation (BP) algorithm. This perspective also suggests
ways in which to achieve better performance than BP through more effective exploitation of local
memory and computation in a distributed fusion system.

7 Additional Research Progress

We have also made significant progress in the following areas:

" Optimal allocation of simulation budget in simulation-based optimization (Chen et. al. 2004a,
Fu et. al. 2004, Fu et. al. 2006);

" New results in zero-sum Markov games (Chang and Fu 2004);

" Applications in inventory control, telecommunications, preventive maintenance and produc-
tion control (Zhang and Fu 2005, Chen et. al. 2004b, Ridley et. al. 2004, Yao et. al. 2006).
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2004, 2304-2309.

* V. Ramezani, M.C. Fu, and S.I. Marcus, "Risk and Information in the Estimation of Hidden

Markov Models," Proc. 2004 Winter Simulation Conference, December 2004, 1596-1601.

* M.C. Fu, J.Q. Hu, C.H. Chen, and X. Xiong, "Optimal Computing Budget Allocation Under

Correlated Sampling," Proc. 2004 Winter Simulation Conference, December 2004, 595-603.

" P. Fard, R. J. La, K. Lee, S. I. Marcus, and M. Shayman, "Reconfiguration of MPLS/WDM

Networks Using Simulation-Based Markov Decision Processes," Proc. 39th Annual Confer-

ence on Information Sciences and Systems, Baltimore, MD, February 2005.

" L. Chen, M. Cetin, and A.S. Willsky, "Graphical Model-Based Algorithms for Data Asso-
ciation in Distributed Sensing," Adaptive Sensor Array Processing Workshop, MIT Lincoln
Laboratory, June 7-8, 2005.

* M.C. Fu, J.Hu, and S.I. Marcus, "Population-Based Evolutionary Approaches for Solving

Markov Decision Processes," Proc. 2005 IFORS Conference, July 11-15, 2005, Honolulu,
Hawaii.

" L. Chen, M. Cetin, and A.S. Willsky, "Distributed Data Association for Multi-Target Tracking
in Sensor Networks," Intl. Conf. On Information Fusion, July 2005; Best Student Paper

Award.

* C. Panayiotou, W.C. Howell, and M.C. Fu, "Online Traffic Light Control Through Gradient

Estimation Using Stochastic Fluid Models," Proc. IFAC Triennial World Congress, 2005.

* M. C. Fu, "Sensitivity Analysis for Stochastic Activity Networks," Proc. International Conf.
on Automatic Control and Systems Engineering, 2005.

* Y. He, M. C. Fu, and S. I. Marcus, "A Two-Timescale Simulation-Based Gradient Algorithm
for Weighted Cost Markov Decision Processes," Proc. 44th IEEE Conference on Decision and

Control, December 2005, 8022-8027.
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* H. S. Chang, M. C. Fu, and S. I. Marcus, "Recursive Learning Automata for Control of

Partially Observable Markov Decision Processes," Proc. 44th IEEE Conference on Decision

and Control, December 2005, 6091-6096.

" R. L. Bennett, M. C. Fu, R. Jarrow, D.A. Nuxoll, and H. Zhang, "A Loss Default Simula-

tion Model of the Federal Bank Deposit Insurance Funds," Proc. 2005 Winter Simulation

Conference, December 2005, 1835-1843.

" M. C. Fu, F.W. Glover, and J. April, "Simulation Optimization: A Review, New Develop-

ments, and Applications," Proc. 2005 Winter Simulation Conference, December 2005, 83-95.

" J. Hu, M. C. Fu, and S. I. Marcus, "Stochastic Optimization using Model Reference Adaptive

Search," Proc. 2005 Winter Simulation Conference, December 2005, 811-818.

" J.K. Johnson, D.M. Malioutov, and A.S. Willsky, "Low-Rank Variance Estimation in Large-

Scale GMRF Models, ICASSP 2006, Toulouse, France; winner Outstanding Student Paper

Award.

* M.C. Fu, J. Hu, and S.I. Marcus, "Model-Based Randomized Methods for Global Opti-

mization," Proc. 17th International Symposium on Mathematical Theory of Networks and

Systems, Kyoto, Japan, July 24-28, 2006, 355-363.

" H. Zhang and M. C. Fu, "Applying Model Reference Adaptive Search to American-Style

Option Pricing," Proc. 2006 Winter Simulation Conference, December 2006, 711-718.

" H. S. Chang, M. C. Fu, and S. I. Marcus, "Adversarial Multi-Armed Bandit Approach to

Stochastic Optimization," Proc. 45th IEEE Conference on Decision and Control, December

2006, 5681-5686.

" Y. Xin, M. Shayman, R.J. La, and S.I. Marcus, "Reconfiguration of Survivable MPSL/WDM

Networks," Proc. IEEE GLOBECOM , San Francisco, CA, Nov. 27-Dec. 1, 2006.

" M. C. Fu and W.C. Howell, "Traffic Light Signal Optimization via Simulation," Proc. In-

ternational Modeling and Simulation Multiconference: Al, Simulation and Planning in High

Autonomy Systems (AIS) and Conceptual Modeling and Simulation (CMS), 2007.

8.3 Authored Books or Monographs

* H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus, Simulation-based Algorithms for Markov

Decision Processes, Springer-Verlag, 2007 (research monograph).

8.4 Edited Volumes

" F.B. Alt, M.C. Fu and B.L. Golden, editors, Perspectives in Operations Research: Papers in

Honor of Saul Gass' 80th Birthday, Springer-Verlag, 2006.

* M.C. Fu, R.A. Jarrow, J.-Y. Yen, and R. J. Elliott, editors, Advances in Mathematical

Finance, Birkhauser, 2007.
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8.5 Awards

" Alan Willsky: 2004 IEEE Donald G. Fink Prize Paper Award

* Alan Willsky: Univ. de Rennes, Doctorate Honoris Causa, 2005

* Best Student Paper Award: L. Chen, M. Cetin, and A.S. Willsky, Distributed Data Associa-
tion for Multi-Target Tracking in Sensor Networks, Intl. Conf. On Information Fusion, July
2005.

" Outstanding Student Paper Award: J.K. Johnson, D.M. Malioutov, and A.S. Willsky, Low-
Rank Variance Estimation in Large-Scale GMRF Models, ICASSP 2006, Toulouse, France

8.6 Ph.D. Students

" Martin Wainwright, Ph.D, 2005, MIT, supervised by A. Willsky, currently Assistant Professor
in EECS and Statistics, Univ. of California, Berkeley

* Alex Ihler, Ph.D, 2005, MIT, supervised by A. Willsky, currently Assistant Professor, Toyota
Technical Institute, Chicago

" Jiaqiao Hu, Ph.D, 2006, Univ. of Maryland, supervised by S. Marcus and M. Fu; currently
an Assistant Professor in Applied Mathematics and Statistics at SUNY Stony Brook

" Enlu Zhou, Ph.D expected 2008, Univ. of Maryland, supervised by S. Marcus and M. Fu

" Yongqiang Wang, Ph.D expected 2010, Univ. of Maryland, supervised by S. Marcus and M.
Fu

* Lei Chen, Ph.D expected May 2007, MIT, supervised by A. Willsky

" Dmitry Malioutov, Ph.D expected 2008, MIT, supervised by A. Willsky

8.7 Postdocs

" Vahid Ramezani, 2004-2005, Univ. of Maryland, supervised by S. Marcus and M. Fu; cur-
rently at IAI

" Ying He, 2004-2005, Univ. of Maryland, supervised by S. Marcus and M. Fu; currently at
NIH
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